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Collaboration

o LOS A|amOS INSTITUT

NATIONAL LABORATORY DE RADIOPROTECTION
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EST.1943

I IRSN PSN-EXP/SNC/LN :
N. Thompson, W. Monange, B. Dechenaux, E. Dumonteil
I LANL NEN-2 group:
J. Hutchinson, R. Bahran, G. McKenzie, M. Nelson, A. McSpaden
| RCF staff @ RPI led by P. Caracappa
I Experiments at RPI performed in mid-2017

I Analysis: N. Thompson (1 year postdoc at LANL+1 year postdoc at IRSN)
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Clustering & Spatial correlations
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Motivations to study spatial correlations

I Spatial correlations generalize the notion of stochastic noise

I Monte Carlo criticality codes :
= “artificial” sampling of the fission pdf width (2 or 3 neutrons)
= “artificial” spatial correlations and stochastic noise
= prevent to correctly estimate error bars when simulating large systems
= => generalized central limit theorems could be used is correlations/noise
could be properly characterized

I Correlated physics Monte Carlo codes :
= use for homeland security applications, noise-based detectors (ex: fuel
reloading), systems with low sources levels (ex: start-up of reactors), ...
» these codes use specific nuclear data: nubar => mean number of pairs
= qualification of these codes needs specific benchmarks/experiments

I Research reactors / industry/ etc.
= Understanding fundamental principles of stochastic fluctuations at the startup
of sub-critical / critical experiments

» Feynman & Rossi curves behavior vs reactivity, dominance ratio, etc. ?
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Measurements to characterize
clustering / spatial correlations ?

O Should be measurable, if certain conditions are gathered:

o (L) (N)_LL _~fm=
s\ D AN) T N2

O Ideal conditions for an experiment that could characterize clustering?

E Neutron
)\ | Mmigration area

Q Zero power reactor
d Fresh fuel, no burn-up effects RCF@RPI
0 As big as possible

Q Find a way to do spatial measurements NOMAD detectors & He3 tubes
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RPI RCF

| “Zero power” reactor (maximum operating power = 15 W)
= Fuel is essentially “fresh”, not activated
= Makes it very easy to set up and perform
experiments

I UO, ceramic fuel, 4.81 wt. % 235U, 335 fuel pins for
measurements
= Fuel is 36 inches active length

| Water moderated

I Four boron control rods surrounding the core




Measurements at RPI

I Were able to complete 3 full days of experiments

I Experiments used two NOMAD detectors

| Also used SHe tubesin the core




Measurements at RPI




Measurements at RPI

I Made over a dozen critical measurements at different reactor

powers, from less than 1 mW to 0.85 W
= 0.93mW,1mw, 14 mw, 1.7 mW, 4.1 mW, 4.6 mw, 7.0 mW, 43 mW, 85 mW,

90 mwW, 90 mwW, 0.47 W, 0.85W
= Measurement times varied from 30 seconds to 2 hours long

I During the measurements, we did not adjust control rod positions
= Because of this, some measurements were slightly above or below critical

I Measurements with the in core 3He detectors, NOMAD detectors,

and RCF detectors (uncompensated ion chambers)
» |n core 3He detectors tended to saturate at fairly low power levels

= => 3He detectors were used to calculate correlations vs distance in the core
= => NOMAD detectors were used in the analysis to calculate spatial correlations

vs power outside the core

S, RS




Simulations of the RCF Measurements

I Simulations of the experiment showed it might be possible to
measure clustering / spatial correlations at the RCF

I Experiments were designed with two NOMAD detectors
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Detectors




Design of the experiment using MORET 5

O MORET 5 code with all Random Noise options activated:

O Data library: Endfb71
O Fission sampling:
v Freya
v discrete Zucker and Holden tabulated
v" Pn distributions and corresponding nubars s -
v" Only Spontaneous fissions : e i

Final rho

O Simulations run on the CCRT supercomputer:

O Simulated signal = 1000 s (prompt+delayed)
O Number of independent simulations = 330
O Number of neutrons per simulation = 2.4 104

20

Freguency

15
I
]

Excellent reactivity: Rho = -4 pcm i

+ ° 1 [TTT1 [T1 |_|
Up to 10 mW of simulated power! | ' ) .

[pcm]
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Analysis of the experiment using MORET 5

I Goal was to simulate the actual number of events in the core

I To make the simulations as accurate as possible, a first set of
simulations was done, and fission sites were tallied
= These fission sites were used as the starting neutron positions for the next set of
simualtions
» |nstead of simulating fission neutrons as the starting particles, delayed neutrons with the
accurate proportion of delayed neutron groups were used as starting particles

I Over three months of simulations, using >32 cores
I Almost 8 TB of data (gzipped!)

1 2500 simulations, each with 1000 starting neutrons
= Most simulations died immediately, some multiplied and continued

» Simulations were for 2000 seconds live time
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Systematic Uncertainty in Power

I Since the RCF is “zero” power (produces no heat from fission), reactor
power is inferred indirectly

I Normal procedure for calculating power:
= Bring the reactor critical with gold foils attached to a fuel pin
» |rradiate gold foils, measure the radioactivity after irradiation
= Counts are compared to an MCNP simulation of the reactor

I Many small sources of error:
= Detector calibration, ROI on data acquisition software, error on the number of counts

I Added complication — RCF detectors are not accurate at extremely low
powers (under 5 m\W) and also detect gamma background.

1 Currently working on a estimate of power solely based on the NOMAD
detector responses to reduce uncertainty in power.
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Systematic Uncertainty in Position
I Should be constant and ~1 cm

1 An alignment procedure could be employed to correct the positions
once for all the runs ?

d He3 tube: 4 inches & 30 atm
0 4 He3 tubesfit in the pin-cell !




Simulated data results for power spatial distribution

I Time-integrated power for
the 1.8 mW run

1 3D view and 2D cuts

I Distributions are converged




Simulated radial spatial power distribution

Time-integrated Selected time bin (width: 1 ms)

| Radial power view for the 1.8 mW run

I The different time bins exhibit a spatial Poissonian statistics

2
I Coherent with the —— theoretical prediction
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Simulated axial spatial power distribution

Time-integrated Selected time bin (width: £ ms)

1 Axial power view for the 1.8 mW run

I The different time bins exhibit spatially correlated patterns

2

I Coherent with the 2R theoretical prediction




Comparison between simulated & experimental data

Theoretical prediction :
2/(r) = Avy 1 r? | Experimental data: 1.8 mW run + NOMAD
* 8Dcom32r \2° 8Dt
1 1 I Theoretical, simulated and experimental
> gt (7") X c_ — F data for g vs P are in perfect accordance
0
Annals of Nuclear Energy 63 (2014) 612-618

log-log scale Power cst = -1.019 log-log scale

Experimental data of
g Vs power

Simulation of
g VS power

"Power (mu\uiil) Power (mW)



Comparison between simulated & experimental data

Theoretical prediction : I Experimental data: 1.8 mW run + 3He
B Ao 1 72
8:(r) = 8Dcor3/2r E’ Dt I Theoretical, simulated and experimental

data for g vs distance are in good

1
:> ge (1) " qualitative accordance

Annals of Nuclear Energy 63 (2014) 612-618

I Only 3 points but linear fit strangely good

lin-lin scale

lin-lin scale

Distance cst = -8.454e-05
Distance cst = -6.279e-05

Simulation of
g vs distance

Experimental data of
g vs distance

Distan ceso(cm) 60 m Distance (cm)



Critical catastrophe : what did we expect ?

I Stochastic modelling of the neutron population for the following events
= Capture, inducing transitions n -> n-1 with rate A
= Fission, inducing transitions n ->n -1 +v with rate A-

I We should observe increasing fluctuations
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Critical catastrophe : what did we observe ?

I 2 long runs with similar behavior : analysis of the 5 mW run (2h / 500MB / 107 cts)
I Observation #1 : re-ajustment of the neutron power level

I Observation #2 : fluctuations are not diverging linearly but stayed bounded

Power 8/17/17

- Power slowly
Control Rods increased for 25
. were not moved minutes
from here on

Then moved up
and down for 80
minutes

Power stable for
15 minutes

time (a.u.): |
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Critical catastrophe : what did we conclude ?

I Stochastic modelling of the neutron population for the following events
= Capture, inducing transitions n -> n-1 with rate A
= Fission, inducing transitions n ->n -1 +v with rate Ac
= Spontaneous fission, inducing transitions n -> n + vg with rate ?




Stochastic modeling of the effect of intrinsec sources

| Forward equation for probability of having n neutrons at time t

AP (n,t)
ot

= —dgnP(n,t)+ e (n+1)Pn+ 1,t) + Ap Zp,, (n+1—v)Pn+1—ut)
s
— Ar prnP(n,t) + AsrF Zp,,SFP(ﬂ, —vgr,t) — Asr ZPPSFP(”: t)
L

Vg Vo R

I From which we can derive the equations for mean and variance
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Mean and variance

I We obtain (n) = n(0)e’" + p
‘ |

Power 8/17/17
Power slowly
increased for 25

| minutes

Control Rods
were not moved
from here on
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Time

I To maintain a constant neutron population at late times we must have p <0

—ar ASFUST —ag ber
Var(n,t) = Ce?Pt (,U af) (n) + SFVSF (P‘ ﬂf‘) ~ bsp
P 2,0 i
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Conclusions

I Spatial correlations & clustering in theory/simulations/measurements
match very well

I Theoretical framework to understand the absence of critical catastrophe
=> due to intrinsic sources

I This work should help understanding noise, fluctuations and correlations
of systems with small power

I Might help to qualify correlated physics codes




Remaining work

I Difficulties arising whenever simulating configurations with raising power
I Check of the ergodic assumption to calculate statistical error bars

I Re-run simulations on a supercomputer to reach 10 m\W

I Systematic error bars on power & positions

I Design of an experiment to measure the same quantities for different
dominance ratio, and with different reactivities
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Questions ?




